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The rising fracture toughness behaviour of PMMA was characterized using a crack-bridging 
model originally developed for coarse-grained alumina that predicts a mechanism for crack 
resistance from the bridging of unbroken grains behind the crack tip. Based on the published 
experimental observation of PMMA, the craze zone behind the crack tip was thought to be 
analogous to the effective grain-bridging zone in the model in which the fibrils in the craze 
zone were related to the restraining interfacial ligaments. Self-consistent results in terms of the 
model were obtained which indicates that the crack-bridging model can be used to account 
for the fibril-toughening mechanism in PMMA. 

1. Introducion 
In a previous study [1], we found that PMMA exhibits 
a rising fracture toughness (R-curve behaviour) within 
an indentation crack size range of  300 to 1300/zm. 
This behaviour was believed to be caused by crazing 
near the crack tip. Recently, Mai and Lawn [2] 
developed a fracture resistance model incorporating 
crack closure stresses acting behind the crack tip. They 
applied this model to Al203 where the closure stresses 
were caused by unbroken grains acting as "crack 
bridges" behind the advancing crack front [3]. In an 
analogous manner, we believe that when a crack in 
PMMA advances through the craze zone, unbroken 
fibrils behind the crack tip produce closure forces in a 
direction opposite to the crack opening stresses (see 
Fig. 1). From Fig. 1, it can be seen that the effective 
length of  the crack (C) is assumed to include the craze 
zone and the unbroken fibrils behind the crack tip 
form a bridging zone of  length AC. This interpretation 
of the crack/craze geometry differs somewhat from 
analyses using the Dugdale model where the crack 
length is assumed to be up to but not including the 
craze zone, i.e. Co in Fig. 1. Therefore, the purpose of  
this note is to show the application of the crack closure 
model [2] in explaining the observed rising fracture 
toughness of  PMMA and discuss the implications that 
this model has on the crack/craze geometry. 

2. Theoret ical  background 
An indentation technique for measuring fracture 
toughness of  PMMA as a function of  crack size was 
described previously [1]. With this technique, a con- 
trolled flaw is introduced into a sample with a micro- 
indentor and the sample is then annealed at 85 ~ C for 
8 h to relieve the contact residual stresses. The glass 
transition temperature (Tg) of  this material is approxi- 
mately 100 ~ C; therefore, it is believed that annealing 

process did not cause any "healing" or "coalescence" 
of craze fibrils. By measuring the fracture strength of 
this sample, fracture toughness can be calculated. The 
results from the previous study [1] are shown in Fig. 2. 

Mai and Lawn's [2] model was developed to explain 
increasing toughness with crack extension (R-curve 
behaviour) for nontransforming ceramics. They based 
their model on the experimental observation that 
grain-localized bridging elements behind the advancing 
crack tip acted to restrain the crack. The increased 
crack resistance is a cumulative effect of the crack 
bridges setting up closure stresses behind the crack tip. 
They derived an equation for the fracture toughness 
(T)  as a function of  effective bridging length (AC). 
The predicted fracture toughness is bounded in the 
lower limit by some intrinsic toughness (To) and in the 
upper limit by the macroscopic toughness (T~). The 
toughness equations were originally derived for a slit 
crack, but it can be shown that they are also valid for 
a penny-shaped crack where: 

AC <~ d T =  To 

d ~ a C < A C *  T= : G - ( T ~ -  To) 

x [ 1 - (  AC- AC, -_ D)'/2] "+' 

AC >/ AC* T = T~ (1) 

where AC is the effective bridging length, dis the mean 
separation between closure force centres, and AC* 
is the steady state bridging zone dimension. The 
parameter n is defined as the exponent of the closure 
stress function [2]. Three n values were examined by 
Mai and Lawn [2]: n = 0 corresponds to a uniform 
stress distribution along the crack bridging zone; 
n = 1 corresponds to a stress distribution that is a 
linear function of the crack opening displacement; 
n = 2 corresponds to a non-linear distribution. For  
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Figure 1 Schematic drawing of crack/craze geometry where C is the 
effective length of the crack, AC is the length of the zone where 
fibrils bridge the crack faces, C O is the length of the crack up to the 
craze zone. 

coarse grained A1203, Mai and Lawn found the best- 
fit n value to be 0, i.e. the grain pull-out stresses along 
the bridging zone are uniform. Note that this model 
predicts an R-curve behaviour when the effective bridg- 
ing zone length, AC, falls between AC* and d. The 
toughness will approach either of the two limiting 
values of T~ and To as AC approaches AC* and d. 

Phenomenologically, the craze zone in relationship 
to the crack tip in PMMA appears to play a similar 
role to the crack bridging zone in coarse-grained 
alumina where the fibrils behind the crack tip are 
equivalent to the grain-bridging restraint. The critical 
dimension, AC*, in Mai and Lawn's model [2] would 
appear to correspond to a steady state craze zone 
length and the average bridging distance, d, corre- 
sponds to the distance between adjacent unbroken 
fibrils behind the crack tip. With_this correspondence, 
it is of value to investigate the applicability of  the 
crack-bridging toughening model to the predicted 
fibril-toughening behaviour in PMMA. 

3.  R e s u l t s  a n d  d i s c u s s i o n  
Several assumptions based on published PMMA 
properties have to be made to apply Equation 1 to 
the experimental data in Fig. 2. Experimental obser- 
vations of PMMA single edge-notched specimens [4] 
show that a crack initiates from the initial razor 
notch and grows stably until catastrophic failure. Such 
a phenomenon is consistent with Mai and Lawn's 
model [2] in which the initial crack does not contain 
"bridges" and starts to propagate at To until final 
instability is reached at T~ where the active bridging 
zone length becomes equal to the steady state dimen- 
sion, AC*. The experimental data [4] show that the 
corresponding To is approximately 0.7 M P a m  1/2 and 
T~ is about 1 .6MPam ~/2. Other experimental data 
obtained from double cantilever beam specimens 
[5] give the toughness range 0.6 to 2 . 2 MP am 1/2. 
This latter range, i.e. To = 0 .6 MP am  1/2 and T~o = 
2 .2MPam m, was taken in the present analysis in 
order to include all the observed toughness values for 
PMMA. Experimental results for PMMA also show 
that crazes grow in length from a crack tip with 
increasing stress intensity until they reach a limiting 
value of approximately 38#m [5]. Accordingly, we 
assumed that the steady state craze zone length, AC*, 
to be 38 #m. The distance between two adjacent fibrils 
dcan be obtained using d = )L 1/2 do [6], where 2 is craze 
fibrils extension ratio and do is the fibril diameter. For  
high molecular weight PMMA, the fibril diameter do 
has been determined to be about 0.025/~m [7] and 2 
to be approximately 2.1 [6]. Therefore, the distance 
between two adjacent fibrils, d, was calculated to be 
0.036/Lm. For the closure stress function along the 
craze zone, the value of m = 0 was chosen, i.e. a 
uniform stress distribution, which is consistent with 
the commonly accepted Dugdale model [4, 8, 9]. 

In our previous study, we found that the indentation 
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Figure 2 Experimental data of fracture toughness against indentation crack size (from [1]). 
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Figure 3 Predicted craze zone length at different crack sizes. ( t )  Calculated from Equation l, (--.) best fit with slope of  1.143. 

crack size, C, increases with indentation load, P. It 
appears reasonable to assume that the craze zone 
length, AC, also depends on indentation load, P. With 
this assumption, AC will increase as the crack size 
increases. A relationship between AC and C can be 
obtained by coupling the results in Fig. 2 with the 
above assumed values for T 0, Too, AC*, and d in 
Equation 1. Fig. 3 shows the calculated results and a 
best-fit function of AC against C. This function can be 
represented by 

A C  = Ice  (2) 

where constants k and ~ were determined from linear 

1 . 5  

regression to be 0.0028 and 1.137, respectively. Note 
that as the crack size, C, is increased from about 300 
to 1300/~m, the fibril bridging zone, AC, is predicted 
to increase from 2 to 10#m. 

We can now use the predicted functional form for 
AC from Equation 2 to obtain a prediction for the 
R-curve of PMMA by substituting Equation 2 into 
Equation 1. The results are shown in Fig. 4 along with 
the original experimental data. The good agreement 
between the predicted curve and the experimental data 
follows, of course, from the determination of AC 
against C; however, we can conclude that the crack- 
bridging model does describe the observed R-curve 
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Figure 4 Comparison of  the predicted R-curve of P M M A  from the crack-bridging model with the fracture toughness data for PMMA from 
[l]. 
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of PMMA which gives credence to our assumptions 
regarding fibril-toughening of PMMA. 

Mai and Lawn [2] also gave equations for estimat- 
ing the stress for fibril rupture and the crack opening 
displacement at the position of fibril rupture. The 
crack opening at fibril rupture, u*, a penny-shaped 
crack can be obtained from [10] 

AC* = 2d + (xEu*/8 x/2 ~ To) 2 (3) 

where E is the modulus of elasticity (,-~ 3.1 GPa), and 
~b is the crack geometry constant ( ~  ~/2). The fibril 
rupture stress, a*, can be determined from [2] 

To~ = To + Ea* u* /To (4) 

From Equation 3, u* is calculated to be 2.1 #m and 
from Equation 4, a* is calculated to be 147MPa. 
These values compare quite favourably with those 
found for maximum displacement (1.3 #m) and craze 
stress (120 MPa) based on an analysis of the crack tip 
craze zone in PMMA using the Dugdale model [l 1]. In 
addition, the product 2u 'a*  which represents the 
work per unit area to separate the fibrils across the 
fracture plane can be calculated to be 617 J m -2 . This 
agrees very well with typical fracture surface energies 
for PMMA (400 to 800Jm 2) [12], These results give 
further confidence in the present analysis and the 
assumptions made. However, we realize that this does 
not constitute absolute proof of the model; further 
research is needed for this, especially an independent 

measurement of the dependency of the craze-bridging 
zone with crack length. 
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